Z1 - ein "mechanisches Gehirn"
Da die statischen Berechnungen im Bauingenieurwesen sehr monoton und mühselig waren, kam Zuse die Idee, diese zu automatisieren. Er kündigte 1935 seine Statiker-Tätigkeit und widmete sich ausschließlich der Umsetzung seiner Pläne, die er in einem Tagebucheintrag vom Juni 1937 beschreibt: „Seit etwa einem Jahr beschäftige ich mich mit dem Gedanken des mechanischen Gehirns.“ Das Resultat war der 1938 fertiggestellte, elektrisch angetriebene mechanische Rechner Z1. Er arbeitete als erster Rechner mit binären Zahlen und besaß bereits ein Ein- / Ausgabewerk, ein Rechenwerk, ein Speicherwerk und ein Programmwerk, das die Programme von gelochten Kinofilmstreifen ablas. Die Z1 arbeitete aufgrund von Problemen mit der mechanischen Präzision nie zuverlässig; die mechanischen Schaltwerke klemmten regelmäßig. Von Charles Babbage – den auch Zuse als „den eigentlichen Vater des Computers“anerkennt – hat er erst lange nach dem Ende des Zweiten Weltkriegs erfahren. Für die Z1 entwickelte Zuse die Methode der computergerechten Gleitkommazahlen auf der Grundlage von Mantisse und Exponent. Mit diesem Verfahren berechnet heute jeder gängige Computer, vom Taschenrechner bis zum Cluster, Gleitkommazahlen. Auch die weithin verwendete IEEE-754-Normierung, d. h. die Festlegung auf ein bestimmtes Gleitkommazahlenformat, ist eine Folge von Zuses Grundlagenarbeit. Noch während er an der Z1 arbeitete, übertrug er die mechanische Schaltung in die elektromechanische Relaistechnik. Zuse erprobte sie zunächst an einem Prototyp Z2, den er 1939 fertigstellte. 1940 führte er das Gerät dem technischen Direktor der Deutschen Versuchsanstalt für Luftfahrt Günther Bock vor, der sich daraufhin bereit erklärte, die Entwicklung der Z3 mitzufinanzieren.
Z3 – der erste funktionsfähige Computer der Welt
1941 baute Zuse in den Räumen des Ingenieurbüros, das er inzwischen gegründet hatte, die Z3. Am 12. Mai 1941 stellte Zuse diese von ihm in Zusammenarbeit mit Helmut Schreyer gebaute Rechenmaschine Z3 vor. Es war ein vollautomatischer, in binärer Gleitkommarechnung arbeitender Rechner mit Speicher und einer Zentralrecheneinheit aus Telefonrelais. Berechnungen konnten programmiert werden, jedoch waren keine bedingten Sprünge und Programmschleifen möglich. Die Z3 gilt heute als erster funktionstüchtiger Computer der Welt. Eine Notiz Zuses aus dem Jahr 1942 zu möglichen Anwendungsfeldern des Rechners nennt unter dem Stichwort „Verwandtschaftslehre“, die Möglichkeit „Verwandtschaftsbeziehungen von zwei beliebigen Menschen A, B zu berechnen“. Praktische Bedeutung sah er in der „systematische[n] Rassenforschung, Ahnenforschung [und als] Unterlage für [die] Vererbungslehre“. Hierfür sei die „Registrierung von bestimmten charakteristischen, eindeutig bestimmbaren Eigenschaften, z. B. Erbkrankheiten (Bluter)“, für „Verwandtschaftsverhältnisse ist eine eindeutige Kurzschrift erforderlich.“ Das Gerät wurde praktisch zur Berechnung einer komplexen Matrix eingesetzt, die zur Untersuchung des Flügelflatterns, das zum Absturz zahlreicher Flugzeuge geführt hatte, benötigt wurde. Allerdings wurde die Z3 nie als „dringlich“ eingestuft und auch nie in den Routinebetrieb übernommen. Nachdem das Original am 21. Dezember 1943 bei einem Bombenangriff zerstört wurde, befindet sich ein funktionsfähiger Nachbau im Deutschen Museum in München. Dieser Nachbau wurde 1962 von der Zuse KG zu Ausstellungszwecken angefertigt. Der Rechner war nicht dafür konstruiert, Turing-vollständig zu sein und wurde auch nie in diesem Sinne benutzt, was auch nicht sinnvoll möglich gewesen wäre. Allerdings wies Raúl Rojas im Jahr 1998 nach, dass er durch das Ausnutzen gewisser Tricks, wie das Aneinanderkleben des Lochstreifens zu einer Schleife, diese Eigenschaft besitzt. Es ist damit der erste tatsächlich gebaute Rechner, der diese Eigenschaft besaß. Charles Babbages „Analytical Engine“ wäre ebenfalls Turing-vollständig gewesen, wurde aber nicht fertiggestellt.